CHAPTER 3

Quantum distribution
theory and partially
coherent radiation

As we have seen in the previous chapters, there are quantum fluc-
tuations associated with the states corresponding to classically well-
defined electromagnetic fields. The general description of fluctuation
phenomena requires the density operator. However, it is possible to
give an alternative but equivalent description in terms of distribution
functions. In the present chapter, we extend our treatment of quan-
tum statistical phenomena by developing the theory of quasi-classical
distributions. This is of interest for several reasons.

First of all, the extension of the quantum theory of radiation to
involve nonquantum stochastic effects such as thermal fluctuations
1s needed. This 1s an important ingredient in the theory of partial
coherence. Furthermore, the interface between classical and quantum
physics is elucidated by the use of such distributions. The arch type
example being the Wigner distribution.”

In this chapter, we introduce various distribution functions. These
include the coherent state representation or the Glauber-Sudarshan P-
representation. The P-representation is used to evaluate the normally
ordered correlation functions of the field operators. As we shall see in
the next chapter, the P-representation forms a correspondence between
the quantum and the classical coherence theory. This distribution
function does not have all of the properties of the classical distribution
functions for certain states of the field, e.g., it can be negative. We also
discuss the so-called Q-representation associated with the antinormally

* The first quasiclassical distribution, Wigner [1932], was written from a wave function perspective.
The later work of Moyal [1949] introduced the characteristic function approach to obtaining the
Wigner distribution. For reviews of the subject see Hillery, O’Connell, Scully, and Wigner [1984),
and Reichl, chapter 7 [1980]. The very readable textbooks by Louisell [1974], Walls and Milburn
[1994], and Cohen [1995] extend the quasiclassical distribution concept and are recommended
reading.
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ordered correlation functions. Other distribution functions and their
properties are also presented.

3.1 Coherent state representation

The study of the interface between quantum and classical physics is a
fascinating subject. Nowhere is this better illustrated than in quantum
optics, where we are often faced with the problem of characterizing
fields which are nearly classical but have important quantum features.
The coherent states are well suited to such studies. In order to see why
this is the case, let us recall that for a fluctuating classical field we are
generally dealing with a probability distribution P(&) for the complex
field amplitude & = |£le® as indicated in Fig. 3.1.

Now in quantum mechanical problems, a probability distribution
for the system comes from the statistical or density operator which is
defined as follows. Suppose we know that the system is in state |y),
then an operator O has the expectation value

(O)om = (y|0ly), (3.1.1)

but we typically do not know that we are in |yp). We only have a
probability P, for being in this state so we must perform an ensemble
average as well

((O)Yomensemble = Y _ Py (10|O[1p). (3.1.2)

lp

Now using completeness Z n){n| =1
((0)) = Py(plOln)(nly)

noy
=Y > Py(nly){p|On)

nooy

= (nlpO|n). (3.1.3)

Thus the radiation field is, in general, described by the density
operator

p=Y_Pylp)yl, (3.1.4)
.

where P, is the probability of being in the state |y). The expectation
value of any field operator O is then given by
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&)

P( &)

(0) (3.1.5)

where Tr stands for trace. Now the density operator p can be expanded
in terms of the photon occupation number states:

p = Inynlplm)m| =" " puuln)(m

Likewise the expansion may be made in terms of coherent states as

o= [ L b ) ol .

Following Glauber’s convention we define the R-representation as

= Tr(Op),

(3.1.6)

(3.1.7)

Fig. 3.1

(a) The fluctuating
classical field as a
function of time for a
field with large
fluctuations (solid
line) and a well
stabilized field
(dashed line), and
(b) associated
probability
distributions.
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R(o", B) = (u|p|B)er = +1AR), (3.1.8)
so that the density matrix may be written as
2 2
/ / dad '8 o) (BI R(e", B)e 21 +IED), (3.1.9)

We thus have used two mdlces n and m or « and B in order to specify
the density matrix.

We next make contact with P (&), as discussed earlier, by developing
a diagonal coherent state representation. That is, we express the density
operator p in terms of the diagonal pair |a){«| in the following.

3.1.1 Definition of the coherent state representation

Consider an operator Oy(a,a'), which is a function of a and a' in the
normal order (all the creation operators a' on the left-hand side and
all the annihilation operators a on the right-hand side), i.e.,

On(a, aT) = Z Z c,,m(af)"a”‘. (3.1.10)

It may be noted that any operator involving a and a' can be con-
verted into a normal ordered form by using the commutation relation
[a,a'] = 1. For example a’*a’ = a'a® + 2a. The expectation value of
the operator Oyn(a, a') can then be written as

(On(a,a")) = Tr[pOn(a,a")]
= Z Z e Trlp(a’)"a™. (3.1.11)
As discussed in Appendix 3.A, we define the operator
5(a" — a")d(a — a)
1 . .
=3 / exp[—p(a" — a")] explB(x — a)ld’B, (3.1.12a)
or, in an equivalent form
8(o" — a)d(a — a)
1 . -
=3 / exp[—if(«” — a')] exp[—i"(x — a)]d*B. (3.1.12b)

We will use (3.1.12a) and (3.1.12b) interchangeably in the text. Equa-
tion (3.1.11) can then be rewritten as

Ontaa) = [ E Y3 emTrlpdlo” —a)oe - @l o

_ / PP (0 )0x (0, o), (3.1.13)

where
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P(a,a') = Tr[pd(a” — a*)é(x — a)]. (3.1.14)

It is seen from Eq. (3.1.13) that the function P(x,a") can be used to
evaluate the expectation values of any normal ordered function of a
and a' using the methods of classical statistical mechanics. Due to the
Hermiticity of the density operator p, the distribution function P(a, o)
is real. Moreover, since Tr(p) = 1, P(a, ") is normalized to unity, 1.e.,

/P(oc, o)l = 1. (3.1.15)

The function P(a,a”) is referred to as the P-representation or the
coherent state representation. The name coherent state representation
is due to the following representation of the density operator p by
means of a diagonal representation in terms of the coherent states:

p = /P(cx, o)) {er| dPor. (3.1.16)

The equivalence of the definitions of P(x,a") as given by Eqgs. (3.1.14)
and (3.1.16) can be seen simply by substituting for p from Eq. (3.1.16)
into Eq. (3.1.14). As we shall see in the next chapter, P(a, o) forms a
connection between the classical and quantum coherence theory.

Before considering some examples of the P-representation, we give
a simple procedure to find P(x,«") from a knowledge of p. Let |B)
and |—pB) be the coherent states with f and —p being the eigenvalues
of a, respectively. Then, using Eq. (2.4.7),

(~B1plB) = [ Pl (~Bla) (o)
- e"BIZ/[P(a, a*)e_lalz]eﬁ“*_[j*“dza. (3.1.17)
At this point we note that if « = x, + iy, and B = xp + iy, then

d*a = dx,dy, and Bo* — B*o = 2i(ypx. — Xgys), and Eq. (3.1.17)
becomes

(—BlolB)e "
:/ / [P (x4, ya)e TN 20503 dx dy,, (3.1.18)
Thus, (—p Ipl,b’)em|2 is the two-dimensional Fourier transform of

P(a, e, This shows the utility of considering the matrix element
(—B|p|B), since the inverse Fourier transform readily gives P(a, ") in
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terms of the density operator p. On taking the Fourier inverse of Eq.
(3.1.17), we obtain

e(x§+Y§) 3.1 .30
P(O(, a*) = //<__‘B|p|ﬂ>e(xﬁ-f-yﬂ)e2t(yaxﬁ—-xayﬁ)dxﬂdyﬁ
el , o
= / (—Blp|B)e’r e PP g2 p, (3.1.19)

This is the required expression.

3.1.2 Examples of the coherent state representation

As a first example, we calculate P(x,a") for the thermal field. A
field emitted by a source in thermal equilibrium at temperature T is
described by a canonical ensemble

exp(—# /kgT)

~ Tr[exp(—# /ksT)]’ (3.1.20)

where kg is the Boltzmann constant and # is the free-field Hamil-
tonian, # = hv(a’a + 1/2). For simplicity, we restrict ourselves to
a single mode of the field. On substituting this form of # into Eq.
(3.1.20) we obtain

p= Z[l—eXp( kthﬂ p(—;’%> myml.  (3.121)

Correspondingly

-1
(n) = Tr(a*ap) = [exp (;{Z—VT> — 1] . (3.1.22)

Equation (3.1.21) can therefore be rewritten in terms of (n) as

_ (m)"

This leads to the well-known result that the photon distribution in a
thermal field is described by the Bose—Einstein distribution, ie.,

pnn = (nlpln)

(n)"
- T (3.1.24)
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Next we substitute for p from Eq. (3.1.23) into Eq. (3.1.19). We note
that

ny"

(—BlpIB) = Z W:l(—ﬁln)('ﬂﬁ)
eI N B () Y
- ()

14+ (m) &= n! 1+
_ e 1Bl e “1_.
=T >exp [ I (1 + (n))]’ (3.1.25)
so that
o ~1BP/ (1455 ) ,—Ba+ap® 32
P(a,a)—m/e ( W)e dﬂ
_ b
= n(n)e , (3.1.26)

ie., the P-representation of the thermal distribution is given by a
Gaussian distribution.

As another example, we consider the P-representation of a coherent
state |op). Here p = |ap){ap| so that

(—BlplB) = (—Bloo) (%lB)
= exp(—lao|* — [BI* — 00B” + Berg). (3.1.27)

It then follows from Eq. (3.1.19) that

* 1 * * *
P((X,a )= Feldiz—lot(ﬂz /e_ﬂ(a —o)+B (Ol—oto)dZB

= 6D (o — ag), (3.1.28)

i.e., the P-representation of a coherent state is a two-dimensional delta
function.

Even though the P-representation allows us to evaluate the normally
ordered correlation functions of the field operators a and af, it is not
nonnegative definite and as such cannot be described as a distribution
function for certain field states. This can be readily seen by evaluating
the P-representation of a number state |n), for which p = |n){(n| and

(—BlpIB) = (—Bln)(nlB)

__1\n|p|2n
= eXp(—|ﬁ|2)%. (3.1.29)
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The corresponding P-representation is, therefore, given by

1) nelo?
P((X,a)—( /|ﬁ|2n —ﬁa+ﬁad2ﬁ

2n

2 2
_ el o" /e_B“"Lﬂ'“dz[)’

n2n! foltdotr
eiazl2 o
= nl Gomdar
For n > 0, this is clearly not a nonnegative definite function and, there-
fore, a number state does not have a well-defined P-representation.
As we will discuss in the next chapter, whenever the photon distri-
bution p,, is narrower than the Poisson distribution, as in the case of
number state |n), P(x, ") becomes badly behaved. This is the price we

pay for forcing quantum physics into a classical format, i.e., for using
P(a,o”) instead of say, R(a, f*).

I(a). (3.1.30)

3.2 Q-representation

Just as the P-representation is associated with the evaluation of nor-
mally ordered correlation functions of the field operators a and a', we
may define other distribution functions which may be associated with
different orderings of a and a'. The distribution function which helps
in determining the antinormally ordered correlation functions is the
so-called Q-representation. It is defined as

Q(o, o) = Tr[pd(a — a)d(a” — a')]. (3.2.1)
It follows, on inserting the representation (2.4.6) for unity between
6(x — a) and 6(o* — a') and using (2.2.1) that
* 1 *
0(0o') = 2Tt [ & (p3(a— o) 1606 ~ )
- %Tr/dzoz’{pé(a — o)/ Yo/ |0 [" — ()]}

~ Tr(plz) ()

= (alple). (322)

1e, Q(a,«") is proportional to the diagonal element of the density
operator in the coherent state representation. It follows from the
completeness of the coherent states |«) (Eq. (2.4.6)) and the condition
Tr(p) = 1 that Q(a, «*) is normalized to unity, i.e.,
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/ Qer, 0" )P = 1. (3.2.3)

In order to see how the antinormally ordered correlation functions
of a and a' are evaluated using the Q-representation, we first define a
function O 4(a,a’) in antinormal order, i.e.,

Oa(a,a") =" " dpma"(a")". (3.2.4)

It then follows that
(04(a,a")) = Tr[04(a,a)p]

=D dunTrla"(@')"p]
= ; Zn:danr {-7![- /an|a><a|(aT)de2a
=Xy don [ oo alpla)da

= /Q(oc, o )0 (o, 0" )d, (3.2.5)
where, in the third line, we inserted
% / |oc) (x| do = 1. (3.2.6)

Unlike the P-representation, Q(a, o) is nonnegative definite and
bounded. This can be seen by substituting for p from Eq. (3.1.4) into
Eq. (3.2.2). We then obtain

1
Qwa’) = — > Pyl(yla)[* (327
p

Since |{y]a)|> < 1, we have
. 1
O, a’) < — (3.2.8)

The Q-representation may be related to the P-representation by
taking the coherent state diagonal element of p in Eq. (3.1.16). The
resulting equation is

1 ,
O, ") = - / P(o/, o )e " g2/ (3.2.9)
As an example, Q(a, o”) for a number state |n) is given by
o 1 y e |
Qe o) = —|{nlo)|” = PR (3.2.10)

which is a well-behaved function. The Q-representation of a squeezed
state is given in Section 3.5.
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3.3 The Wigner—Weyl distribution

So far we have discussed various distribution functions, namely P-
and Q-representations associated with the normal and the antinormal
orderings, respectively, of the operators a and a’. We can similarly
derive distribution functions associated with other orderings.

To summarize, we have introduced

P(o,a*) = Tr[6(«" — a¥)d(o — a)p], (3.3.1a)
O, o) = Tr[d(a — a)d(a* — a')pl, (3.3.1b)

which we can write in terms of the so-called characteristic functions.
For example, inserting (3.1.12b) into (3.3.1a) we have

P(a,o') = ;15 /dzﬁe"iﬂ“'_"ﬁ‘“c(")(ﬁ,B'), (33.2)
where the characteristic function C"(8, 8*) is defined as

C™(B,B") = Tr (eiﬁ"*e"ﬂ'“p) . (33.3)
Likewise, we may write (3.3.1b) as

0%0) = = f a2 eI C(p, ), (334)
with the characteristic function

CO(B,B7) = Tr (e ). (33.5)
Another useful distribution, due to Wigner and Weyl, is defined as

W(oa') = % / d*pe” PP CO(B, B, (3.3.6)

where the characteristic function C®(8, B*) is given by
COB, B ) =Tt <e"ﬁ“*+"ﬂ‘“p) . (33.7)

This distribution function W (a, «") is associated with symmetric order-
ing. It can be used to evaluate expectation values of any symmetrically
ordered functions of a and a' in a classical fashion. For example,

%(acfr +ata) = / W (a, o Joer” dt. (3.3.8)
In Appendix 3.B, we give a procedure to find the c-number func-
tion Og(a, a") corresponding to the symmetrically ordered form of an
operator O(a,a').

Historically, the W(a,o*) distribution was introduced in terms of
the position § and momentum p operators in a form equivalent to
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1 . NP
We.9) = G / do / dre DTy [¢miChrodp] - (339)

To cast this into the form first introduced by Wigner we use the
operator identity

eAtB — A gB o T4BI/2,

which holds when the commutator [4, B] commutes with 4 and B, to
write (3.3.9) as

Wi(p,q)
1

_ i(tp+0q) —itph —icq —ihot/2 )
(2n)2/d0/dre Tr (e e e e, (33.10)

which by cyclic invariance under the trace may be written as

1
Wi(p,q) = w /dff
/drei(tp-%-aq)Tr (e—irf)/2e—ia¢}pe—irﬁ/2) e—ihat/2. (3311)

Writing the trace in the coordinate representation this becomes

/ dq' (q'|e P/ 2e7100 pe=Tb/2| ¢\~ hOT/2, (33.12)

and noting that exp(—itp/2)lq’) = |q¢' — ht/2) etc., we find

Wi(p,q) = (27102 /do/dr

/ dq'e® 9D (¢ + ht/2)plq — ht/2)e™®.  (3.3.13)

Finally, we carry out the g-integration to obtain a delta function (g —
q’), which allows us to carry out the ¢’-integration, and introducing

the notation y = —ht/2, we write W(p,q) in the usual form
1 —i2yp/h
Wipq)=— [ dye {4 —ylplg + y). (3.3.14)

The Wigner function in the form (3.3.14) has been widely used in a
host of problems; and we further elaborate on its connection with the
P- and Q-distributions in the next section.
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3.4 Generalized representation of the density operator
and connection between the P-, O-, and
W -distributions

In the following, we present a generalized representation of the density
operator originally due to Cohen and applied to quantum optics by
Agarwal and Wolf. The P-, Q-, and W -representations can be derived
as special cases of this generalized representation.

A generalized representation F(a,«") of the density operator is
given by

p=m / FO(, 0 )AD (0 — a,0" — a')da, (3.4.1)

where

wa_mw—ﬂh=31/nmm&ﬁm

2
YA
x exp[—p(o" — a)+ p*(a— a)]d2ﬂ3.4.2)
Here Q(f, B*) (such that (0,0) = 0) is a function which characterizes
different orderings. For example, when Q(8,8*) = —|B|?/2 we have
F®(a,*) = P(a, ") and when Q(B, 8*) = |B|2/2 we have F& (¢, o*) =
Ofo, ™).

To see these results explicitly, we first consider

2
ap.g)=-L" (3.4.3)

It follows from Egs. (2.2.6) and (2.2.7) that
2
exp (-—'—g'— + Ba’ — ﬁ*a) = exp(—p*a)exp(Ba’), (3.44)

and we obtain
* 1 * >
1 ’ —B(o*—a
=3 //eﬂ =)y ) oy e~ @ By
1 ) B ot
=5 [ [ ot o pa
1
= ;ch)(al. (3.4.5)
On substituting this expression for A®(a — a,a* — a’) into Eq. (3.4.1)

we recover the definition of the P-representation (Eq. (3.1.16)) with
FO(a, ") = P(a, o).



84 Quantum distribution theory and partially coherent radiation

On the other hand, if we choose Q(B, 8*) = |BI%/2,
A —a,a" —al) = % /e‘ﬁ(“‘_“”eﬁ'(“—’z)dzﬁ. (3.4.6)
It follows from Eq. (3.4.1) that
%(a'|p|a’) . / FO (o, 0" ) (o | A — a, 0" — al)|oYd?e. (3.4.7)
However, from Eq. (3.4.6),

* 1 » -
(o |[AD (o — a,0" — al)|o) = — /(a’|e"5(°‘ —aN e (=0 |\ 32 B
n

:% e P = ) 2 g
= 6D(a — o). (3.4.8)

On carrying out the a-integration in Eq. (3.4.7) we recover Eq. (3.2.2)
with Q(x, o) = F¥(a, a*).

Another distribution, the Wigner-Weyl distribution, is recovered for
the proper choice of Q, namely, Q(x,«") = 0. To that end, we invert
Eq. (3.4.1) by using the function

B —as’ —a') = [ expl-0(p.p)
x exp[f(a* —a') — (o — a)]d*B. (3.4.9)
Now, it can be shown that (see Problem 3.3)

Tr [A(0 — a,0" — a")A(« — a,o" — a")]
1

— ;5(2)@( — o). (3.4.10)
It then follows from Eq. (3.4.1) that

F®(o, ") = Tr [pA¥(a — a,a" — ah)] . (3.4.11)
From Egs. (3.4.9) and (3.4.11), we obtain

W(x,o")

= ;15 / Tr[pexp(—Ba’ + Ba)l exp(Ba” — Ba)d’p,  (34.12)

which, as expected, is the same as Eq. (3.3.6) with § replaced by —iff
and B* by ip*. Equations (3.1.14) for the P-representation and (3.2.2)
for the Q-representation can be recovered from expression (3.4.11) for
QB,B") = —IBI*/2 and Q(B, B") = |BI?/2, respectively.

In the following we derive an explicit expression for the Wigner—
Weyl distribution W{(x,«*). First we mention that W(a,a*) is the
Fourier transform of the function Tr[p exp(—pa’ + B*a)]/=%. We also
note that exp(—2|a|?) is the Fourier transform of exp(—|8|?/2)/2x, i.e.,
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exp(—2|al?) = 2—17; / exp (—%w) exp(fo* — Bro)d*B.(3.4.13)
It then follows from the convolution theorem that

Wiasexp(—20af’) = [ C(B.B")explB” — B0, (414
where C(8, B”) is the convolution product

CB.") = 55 [ Trlpexpl—(8 — pu)a" + (6"  fi)al}
exp (I8 ) 5. (34.15)

An explicit expression for C(f,B") can be obtained by using the
identity (2.2.7) and inserting the resolution of the identity in terms of
coherent states (Eq. (2.4.6)) as follows:

CB.8") =555 [ [ [ Telolpe) Balexpl—8 - puya
x exp[(B” — B1)allB3){B|}
X eXp (*%IB ~ Bl - %W) d*Bd’ Brd* B
— 505 | [ [(Bslolipaip)
x exp [—(8 — B1)B; + (B — B})Bs
1 1
~5w~mﬁ—§mﬂ
xd? By d? Bod? Bs. (3.4.16)

On carrying out the integrations over S, Eq. (3.4.16) reduces to

CB.8) = 5 [ [ Boloig2)(B/218:) (82 = B/20 oy

1
= 53 (B/2lpl = B/2). (3.4.17)

Finally, on substituting for C(8, %) from Eq. (3.4.17) into Eq. (3.4.14)
and changing the variables of integration from S, 8* to —28, 28", we
obtain

Wi, o)
2 :
= 5 exp(2laf’) / (—BlpIB) expl=2(Bo" — pra)ld’p.  (34.18)

This expression, which is very similar to the corresponding expression
for P-representation (Eq. (3.1.19)), can be used to evaluate the Wigner—
Weyl distribution for the given density operator of the field.
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3.5 Q-representation for a squeezed coherent state

In this section, we derive the Q-representation for the squeezed coher-
ent state | B, &). According to Eq. (3.2.2)

0l o) = ~(alplo) = (eI, )P 351
Now
(@,€) = (SE)DBIO) = (=IS(EIB). (352

We therefore need to calculate the function («|S(&)|B).
It follows, on using the properties of the coherent state and the
transformation property (2.7.7) of S(¢) that

(@S (E)IB) = - (ala’S(E)IB)
= @SS 'S E)IB)
= a—{(a|S(§)(aT coshr — ae~ sinhr)|B)
1 0 1 . —if .
-1 [coshr(@ w1 )— ¢~f sinh r] (S(E)1B).

(3.5.3)

The function («|S(£)|B) therefore satisfies the following differential
equation

{cosh ri — Be Ysinhr + (%ﬂ* coshr — oc")](odS(f)lﬂ} = 0.

op
(3.5.4)
The solution of this equation is
(@S()IB)
=K exp (—-%lﬁl2 + o Bsech r + -21-e"i0,82 tanh r). (3.5.5)

The form of K, which may depend upon o,a*,8%,r, and 6, can be
determined using the unitarity of S(¢). It follows from

(@IS(€)IB)" = (BIST(&)w) = (BIS(—E)|x), (3.5.6)
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that

K 7 0)exp | —3 B + 306 tanbr|

=K(B,B",a",r,0 + m)exp (—%Iocl2 — %e—ieoc2 tanh r) . (3.5.7)

The form of K is therefore
K(o, o, ", r,0)

= (sech r)!/? exp [—%|a|2 — %e"e(oz")2 tanh r} . (3.5.8)

The coefficient (sech r)!/2 is chosen so that the normalization condition

- [ Kais g e =1 (3.59)

is satisfied.
On substituting this expression for K in Eq. (3.5.5) we obtain

(@l S(&)|B) = (sech r)"/% exp { - %(W +|BI%) + o Bsech r

._% [e?(a")* — e7B?] tanh r}. (3.5.10)

The Q-representation for the state |8, &) is therefore

sech r

Qo) =

- exp{ — (Ja? + |BI*) + («" B + B w)sech r

*% [€9(a*? — B*?) + e (o — B?)] tanhr}. (3.5.11)

In Fig. 3.2, Q(o, o) = Q(X 1, X5) (X1 = (a+a")/2, X2 = (a—0a")/2i) is
plotted as a function of the amplitudes X1, X, of the two quadratures.
We clearly see the unequal variances in X; and X; in the state |a, &). We
can employ expression (3.5.10) for («|S(¢)|8) to calculate the photon
distribution function of a squeezed coherent state.

The photon distribution function p(n) for the field in state |B,¢) is
given by

p(n) = |{n|g, &) (3.5.12)
The quantity (n|B, ) can be determined by writing
o ¢} 0

i o’)"
W& =Y i np.&) =3 L g ), (3513)
n=0 n=0 \/ﬁ‘
and expanding the right-hand side of Eq. (3.5.10) in powers of «* by
means of the generating function for the Hermite polynomials H,(z):
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Q(X,, X)

o]

exp(2zt — t?) = Z

n=0

H,(z)t"

pr (3.5.14)

On comparing the resulting expansion with the expansion in Eq.
(3.5.13), it follows that

o (¢’ tanh r)"/? Lo o s
(n|p,&) = T cosh )72 %P | ~5(IBI° — ¢ B tanhr)
—i6/2
xH,l( pe " ) (3.5.15)
2coshrsinhr

The photon distribution function p(n) for an ideal squeezed state is
therefore given by

_ (tanhr)" S B
= SinTeoshr &XP | ~IBI" + 5le" A" +¢7(B) ] tanhr

Bei0/2 2
x /H,, , ) / . (3.516)
V2coshrsinhr

p(n)

Fig. 3.2

A plot of

Qo ") = Q(Xy, X2)
as a function of the
amplitudes X, and
X, in a squeezed
coherent state. (From
H. P. Yuen, Phys.
Rev. A 13, 2226
(1976).)
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Fig. 3.3
Comparison of
photon distribution
function for a
coherent state o)
with |a|? = 60 (solid
line) with the
squeezed coherent
state |8, &)

(B = |Blexp(ig),

& = rexp(if)) with
1B = 60, r = 0.6,
and ¢ = 8/2 (dashed
line).
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Generally, sources of squeezing produce a radiation field in a
squeezed vacuum state |0,&). The detection schemes, however, add
a coherent component to it. The detected state is therefore described
by the distribution (3.5.16). The fluctuations in the mean number of
photons can be found either from Eq. (3.5.16), by using

0
() =" n'p(n), (3.5.17)
n=0
or through the use of the unitary transformation properties of the
squeeze operator (2.7.6) and (2.7.7). We obtain

(An)? = | B|*[cosh 4r — cos(§ — 2¢)) sinh 4r] + 2 sinh? r cosh? 7.
(3.5.18)

In the following, we discuss three cases of interest. First, when
|B]2 > sinh®r, the coherent component is larger than the squeeze
component. Figure 3.3 compares the probability distribution for a
squeezed state with a coherent state. If the squeezing is along the
coherent amplitude, the state has sub-Poissonian photon statistics.
In the second case (Fig. 3.4) when the squeeze component is larger
than the coherent component and squeezing is along the coherent
amplitude, the squeezed state exhibits oscillations. The main peak as
well as the subsequent peaks are narrower than the corresponding /n
value. But the overall distribution shows super-Poissonian statistics.
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Finally, for zero displacement, i.e., for the squeezed vacuum state, the
distribution function (3.5.16) reduces to

2n
p(2n) = (coshr)™! ((ir:)); (% tanh r) ,

p(2n+1)=0. (3.5.19)

In the above equations, a nonzero value for even terms arises due to
squeezing of the vacuum and clearly shows the ‘two-photon’ nature
of the field. Figure 3.5 shows a plot of the probability distribution
(3.5.19). The distribution peaks sharply at n = 0 and has a very long
tail similar to a thermal distribution.

3.A Verifying equations (3.1.12a, 3.1.12b)

It can be verified that the two-dimensional delta function has the form
(3.1.12a)

1
o~ aoa—a) = — / expl—Bla’ — a")] exp[(« — )P
(3.A.1)

by taking the expectation values in a coherent state |y) of both sides
of Eq. (3.A.1). Indeed, on doing so and utilizing the fact that |y) is an

Fig. 3.4

Photon distribution
function p(n) for a
two-photon coherent
state (Eq.(3.5.16)) for
IBI> =60, r = 1.6.
The squeeze
component is larger
than the coherent
component and
squeezing is along the
coherent amplitude.
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Fig.' 3.5

Photon distribution
function p(n) for a
squeezed vacuum
state for r = 1.6.
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eigenstate of the annihilation operator a with an eigenvalue y, we get

8’ =8 =) = = [expl—p(&" = N explf"(a — P,
(3.A2)

If we write & = X, + Vo, p = Xxp + iyp, and y = x, + iy,, then
d*B = dxpdys and the right-hand side of Eq. (3.A.2) becomes

% /exp[—p’(a* — })*)] exp[ﬁ‘(a — Y)]dzﬁ
1
— ? /CXp {2i[xﬁ(yoc - )’,) - y,g(xa — x}.)]}dxﬂdyﬂ

1 \2

= (Z) / /eXp {i[xﬂ(ym _‘y}‘) - yB(xfx - x?)]}dXﬁdyﬂ

= 6[Im(x — y)]6[Re(x — y)]

=5 —y)8(a” — 7", (3.A.3)

where we have replaced 2xz and 2y; by xg and yg, respectively, in the
second line and used the following expression for the delta function

5(x) = 1 / e**dk. (3.A.4)
2n

—00C
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Equation (3.1.12b)
5(a” — at)d(a — a)

1 . .
= / exp[—if(a’ — a’)] exp[—if* (@ — a)]d*p (3.A.5)
can be obtained from (3.A.1) simply by changing the variables § — iff
and g* — —ip".
Another formula for the antinormally ordered two-dimensional
delta function, namely,

5 — a)d(a” — a')
= % / exp[B°(« — a)] exp[—p(o" — ah)]d’p, (3.A.6)

which has been used to define the Q-representation (Eq. (3.2.1)), can
be proven by inserting

%/Iv)(vldzy =1, (3.A.7)
as follows:

n—lz / explB*(« — a)] exp[—p(a" — a"))d’B

_ % / / o =) ) (=P 0N g2 g g2,

- % / / e Cy) (yle P py

= %fé(a — NN IS =y )dy

=s—a) (5 [M6IEr) o —d)
= 6(0— a)d(a’ —a'). (3.A.8)

3.B c-number function correspondence for the
Wigner—Weyl distribution

Given an operator O(a, a') and the Wigner—Weyl distribution W (e, «*),
we calculate the c-number function Og(a, a*) such that

(O(a,da")) = Tr(0p) = /dzocOs(a, o YW (o, ") (3.B.1)

Recall that the Wigner—Weyl distribution is defined as (Eqgs. (3.3.6)
and (3.3.7))
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W o) = % fdzﬁTr(e"ﬁ"'“ﬁ"fp)e“"ﬂ'“_m“' (3.B.2)
with the characteristic function

COUpB) = [ I W i

= Tr(e#"o+# a+P)
= Tr (e e"ﬂ'“e_lﬁ‘z/zp). (3.B.3)

where, in the last line, we use the Baker—Hausdorff formula (2.2.7).
Now for any normally ordered operator O(a, a'), one can write

O(a.a") = cyma™a™. (3.B4)

It can be easily found that

) = [0(?13) B }

Br=p=0
and
_|_9 B
(@) = [6(1[3 *) ] ==0
Then we have
(O(a,a"))
_ Bt n a E m (S)
Z ""‘[ 21] [6(iﬁ*)+2i] . pr=p=0
5 18* n
/d“zc"’"{a(m 2:}
X + b meiﬁ'“+iﬁ“‘ Wi, o)
oip*y 2i pr=p=0
= /dzocOg(a,oc*)W(oc,oc*), (3.B.5)
which yields
Os(o,a')
B 0 ﬂ* n P E m o
‘nz,,;c"’"{ 5 } [50‘3*) Zi] T g

Equation (3.B.6) is our desired result. Consider some examples:
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(a) O(a,a’)=ad'a

Os (o, o)

I D B A . 7
- [a(im * 2:'} la(iﬁ*) i 2i] ¢

_|.o B B\ igatiper
= LN!‘B) + 2i] (‘” 2i) ¢

pr=p=0

B =p=0
(3.B.7)

Os(a, )
= 9 '8* ’ 0 E iB*o+ifo”
(a(iﬁ) 5) (a(iﬁ*) + 21’) ¢ Br=p=0
= g B i B\ igaripar
- (aim %) (=4 5)
_( 9 F
B (6(:‘13) - Z)
. B B 1] iprariper
[ ’ W) (“’“5)‘5]" i
_ 1. B . B
—{ 2(0! +2i)+(a +21)
* ﬂ—* E _1 ipra+ifo’
(+5) (e 2) =3 f
Y S|
== + o (a o — 5)
=a o —a’. (3.B.8)

The operator corresponding to the Wigner distribution func-

tion in the coordinate-momentum representation is given by
Cohen (1986).

Problems
3.1 Show that
1
E(aaT +a'a) = / W (o, o) |t e,

where W(x, a*) is the Wigner—Weyl distribution.
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32 Show that
Tr[D(0)] = n6®(a),
Tr[D(@)D'(o!)] = 18P (o — o),

where D(a) 1s the displacement operator. Using these results,
show that

Tr[A® o — a,a* — aHAD (o — a,a” — a')]
1

= 26— o),
T

The operators A and A® are defined in Egs. (3.4.2) and
(3.4.9), respectively.

33 Show that the Wigner—Weyl distribution W{a, «*) can be ex-
pressed in terms of the P-representation P(a«, ") via the rela-
tion

W) =2 [ PB.B) exp(-2lx — BRAPS.

3.4 Determine Q(a,«”) and W(a,«*) for a coherent state and a
thermal state.



